Pattern formation in generalized Turing systems
نویسنده
چکیده
Turing's model of pattern formation has been extensively studied analytically and numerically, and there is recent experimental evidence that it may apply in certain chemical systems. The model is based on the assumption that all reacting species obey the same type of boundary condition pointwise on the boundary. We call these scalar boundary conditions. Here we study mixed or nonscalar boundary conditions, under which different species satisfy different boundary conditions at any point on the boundary, and show that qualitatively new phenomena arise in this case. For example, we show that there may be multiple solutions at arbitrarily small lengths under mixed boundary conditions, whereas the solution is unique under homogeneous scalar boundary conditions. Moreover, even when the same solution exists under scalar and mixed boundary conditions, its stability may be different in the two cases. We also show that mixed boundary conditions can reduce the sensitivity of patterns to domain changes.
منابع مشابه
Generalized Turing patterns and their selective realization in spatiotemporal systems
We consider the pattern formation problem in coupled identical systems after the global synchronized state becomes unstable. Based on analytical results relating the coupling strengths and the instability of each spatial mode (pattern) we show that these spatial patterns can be selectively realized by varying the coupling strengths along different paths in the parameter space. Furthermore, we d...
متن کاملPatterns in reaction diffusion system
Reaction-Diffusion systems are important in the field of non-equilibrium phenomena with relevance to biological and synthetic pattern formation. While homogenous distribution of chemicals was always believed to be a stable state, the symmetry-breaking treatment by Turing on such systems in 1951 showed pattern formation could be more stable in certain cases. This paper reviews the treatment by T...
متن کاملEffect of randomness and anisotropy on Turing patterns in reaction-diffusion systems
We study the effect of randomness and anisotropy on Turing patterns in reaction-diffusion systems. For this purpose, the GiererMeinhardt model of pattern formation is considered. The cases we study are: (i)randomness in the underlying lattice structure, (ii)the case in which there is a probablity p that at a lattice site both reaction and diffusion occur, otherwise there is only diffusion and l...
متن کاملStripe formation in juvenile Pomacanthus explained by a generalized turing mechanism with chemotaxis.
Current interest in pattern formation can be traced to a seminal paper by Turing, who demonstrated that a system of reacting and diffusing chemicals, called morphogens, can interact so as to produce stable nonuniform concentration patterns in space. Recently, a Turing model has been suggested to explain the development of pigmentation patterns on species of growing angelfish such as Pomacanthus...
متن کاملSPOT PATTERNS IN GRAY SCOTT MODEL WITH APPLICATION TO EPIDEMIC CONTROL
In this work, we analyse a pair of two-dimensional coupled reaction-diusion equations known as the Gray-Scott model, in which spot patterns have been observed. We focus on stationary patterns, and begin by deriving the asymptotic scaling of the parameters and variables necessary for the analysis of these patterns. A complete bifurcation study of these solutions is presented. The main mathematic...
متن کاملTuring pattern formation with fractional diffusion and fractional reactions
We have investigated Turing pattern formation through linear stability analysis and numerical simulations in a two-species reaction–diffusion system in which a fractional order temporal derivative operates on both species, and on both the diffusion term and the reaction term. The order of the fractional derivative affects the time onset of patterning in this model system but it does not affect ...
متن کامل